NTSC-IR
Supervised learning of sparse context reconstruction coefficients for data representation and classification
Liu, Xuejie1; Wang, Jingbin2,3; Yin, Ming4; Edwards, Benjamin5; Xu, Peijuan1
2017
发表期刊NEURAL COMPUTING & APPLICATIONS
ISSN0941-0643
卷号28期号:1页码:135-143
摘要Context of data points, which is usually defined as the other data points in a data set, has been found to paly important roles in data representation and classification. In this paper, we study the problem of using context of a data point for its classification problem. Our work is inspired by the observation that actually only very few data points are critical in the context of a data point for its representation and classification. We propose to represent a data point as the sparse linear combination of its context and learn the sparse context in a supervised way to increase its discriminative ability. To this end, we proposed a novel formulation for context learning, by modeling the learning of context parameter and classifier in a unified objective, and optimizing it with an alternative strategy in an iterative algorithm. Experiments on three benchmark data set show its advantage over state-of-the-art context-based data representation and classification methods.
关键词Pattern classification Data representation Context Nearest neighbors Sparse regularization
资助者Fundamental Research Funds of Jilin University, China ; Fundamental Research Funds of Jilin University, China ; Fundamental Research Funds of Jilin University, China ; Fundamental Research Funds of Jilin University, China ; Fundamental Research Funds of Jilin University, China ; Fundamental Research Funds of Jilin University, China ; Fundamental Research Funds of Jilin University, China ; Fundamental Research Funds of Jilin University, China
DOI10.1007/s00521-015-2042-5
关键词[WOS]SUPPORT VECTOR MACHINES ; NONNEGATIVE MATRIX FACTORIZATION ; FACE RECOGNITION ; FEATURE-SELECTION ; COMPUTER VISION ; INFORMATION ; SPACE ; RETRIEVAL ; SYSTEM
语种英语
资助项目Fundamental Research Funds of Jilin University, China[450060491509]
资助者Fundamental Research Funds of Jilin University, China ; Fundamental Research Funds of Jilin University, China ; Fundamental Research Funds of Jilin University, China ; Fundamental Research Funds of Jilin University, China ; Fundamental Research Funds of Jilin University, China ; Fundamental Research Funds of Jilin University, China ; Fundamental Research Funds of Jilin University, China ; Fundamental Research Funds of Jilin University, China
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000392419100011
出版者SPRINGER
引用统计
文献类型期刊论文
条目标识符http://210.72.145.45/handle/361003/11339
专题中国科学院国家授时中心
通讯作者Yin, Ming
作者单位1.Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Peoples R China
2.Chinese Acad Sci, Natl Time Serv Ctr, Xian 710600, Peoples R China
3.Chinese Acad Sci, Grad Univ, Beijing 100039, Peoples R China
4.Eskisehir Osmangazi Univ, Dept Math & Comp Sci, TR-26480 Eskisehir, Turkey
5.Sam Houston State Univ, Dept Comp Sci, Huntsville, TX 77341 USA
推荐引用方式
GB/T 7714
Liu, Xuejie,Wang, Jingbin,Yin, Ming,et al. Supervised learning of sparse context reconstruction coefficients for data representation and classification[J]. NEURAL COMPUTING & APPLICATIONS,2017,28(1):135-143.
APA Liu, Xuejie,Wang, Jingbin,Yin, Ming,Edwards, Benjamin,&Xu, Peijuan.(2017).Supervised learning of sparse context reconstruction coefficients for data representation and classification.NEURAL COMPUTING & APPLICATIONS,28(1),135-143.
MLA Liu, Xuejie,et al."Supervised learning of sparse context reconstruction coefficients for data representation and classification".NEURAL COMPUTING & APPLICATIONS 28.1(2017):135-143.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Xuejie]的文章
[Wang, Jingbin]的文章
[Yin, Ming]的文章
百度学术
百度学术中相似的文章
[Liu, Xuejie]的文章
[Wang, Jingbin]的文章
[Yin, Ming]的文章
必应学术
必应学术中相似的文章
[Liu, Xuejie]的文章
[Wang, Jingbin]的文章
[Yin, Ming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。